sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें

अध्याय 5 असततता और अवकलनीयता अभ्यास 5.4

अभ्यास 5.4

निम्नलिखित को $x$ के सापेक्ष अवकलज निकालें :

1. $\dfrac{e^{x}}{\sin x}$

उत्तर दिखाएं

हल

मान लीजिए $y=\dfrac{e^{x}}{\sin x}$

उत्पाद नियम का उपयोग करके, हम प्राप्त करते हैं

$ \begin{aligned} \dfrac{d y}{d x} & =\dfrac{\sin x \dfrac{d}{d x}(e^{x})-e^{x} \dfrac{d}{d x}(\sin x)}{\sin ^{2} x} \\ & =\dfrac{\sin x \cdot(e^{x})-e^{x} \cdot(\cos x)}{\sin ^{2} x} \\ & =\dfrac{e^{x}(\sin x-\cos x)}{\sin ^{2} x}, x \neq n \pi, n \in \mathbf{Z} \end{aligned} $

2. $e^{\sin ^{-1} x}$

उत्तर दिखाएं

हल

मान लीजिए $y=e^{\sin ^{-1} x}$

श्रृंखला नियम का उपयोग करके, हम प्राप्त करते हैं

$ \begin{aligned} & \dfrac{d y}{d x}=\dfrac{d}{d x}(e^{\sin ^{-1} x}) \\ & \begin{aligned} \Rightarrow \dfrac{d y}{d x} & =e^{\sin ^{-1} x} \cdot \dfrac{d}{d x}(\sin ^{-1} x) \\ & =e^{\sin ^{-1} x} \cdot \dfrac{1}{\sqrt{1-x^{2}}} \\ & =\dfrac{e^{\sin ^{-1} x}}{\sqrt{1-x^{2}}} \end{aligned} \\ & \therefore \dfrac{d y}{d x}=\dfrac{e^{\sin ^{-1} x}}{\sqrt{1-x^{2}}}, x \in(-1,1) \end{aligned} $

3. $e^{x^{3}}$

उत्तर दिखाएं

हल

मान लीजिए $y=e^{x^{3}}$

श्रृंखला नियम का उपयोग करके, हम प्राप्त करते हैं

$\dfrac{d y}{d x}=\dfrac{d}{d x}(e^{x^{3}})=e^{x^{3}} \cdot \dfrac{d}{d x}(x^{3})=e^{x^{3}} \cdot 3 x^{2}=3 x^{2} e^{x^{3}}$

4. $\sin (\tan ^{-1} e^{-x})$

उत्तर दिखाएं

हल

मान लीजिए $y=\sin (\tan ^{-1} e^{-x})$

श्रृंखला नियम का उपयोग करके, हम प्राप्त करते हैं

$ \begin{aligned} \dfrac{d y}{d x} & =\dfrac{d}{d x}[\sin (\tan ^{-1} e^{-x})] \\ & =\cos (\tan ^{-1} e^{-x}) \cdot \dfrac{d}{d x}(\tan ^{-1} e^{-x}) \\ & =\cos (\tan ^{-1} e^{-x}) \cdot \dfrac{1}{1+(e^{-x})^{2}} \cdot \dfrac{d}{d x}(e^{-x}) \\ & =\dfrac{\cos (\tan ^{-1} e^{-x})}{1+e^{-2 x}} \cdot e^{-x} \cdot \dfrac{d}{d x}(-x) \\ & =\dfrac{e^{-x} \cos (\tan ^{-1} e^{-x})}{1+e^{-2 x}} \times(-1) \\ & =\dfrac{-e^{-x} \cos (\tan ^{-1} e^{-x})}{1+e^{-2 x}}

\end{aligned} $

5. $\log (\cos e^{x})$

उत्तर दिखाएं

Solution

Let $y=\log (\cos e^{x})$

By using the chain rule, we obtain

$ \begin{aligned} \dfrac{d y}{d x} & =\dfrac{d}{d x}[\log (\cos e^{x})] \\ & =\dfrac{1}{\cos e^{x}} \cdot \dfrac{d}{d x}(\cos e^{x}) \\ & =\dfrac{1}{\cos e^{x}} \cdot(-\sin e^{x}) \cdot \dfrac{d}{d x}(e^{x}) \\ & =\dfrac{-\sin e^{x}}{\cos e^{x}} \cdot e^{x} \\ & =-e^{x} \tan e^{x}, e^{x} \neq(2 n+1) \dfrac{\pi}{2}, n \in \mathbf{N} \end{aligned} $

6. $e^{x}+e^{x^{2}}+\ldots+e^{x^{5}}$

उत्तर दिखाएं

Solution

$\dfrac{d}{d x}(e^{x}+e^{x^{2}}+\ldots+e^{x^{3}})$

$=\dfrac{d}{d x}(e^{x})+\dfrac{d}{d x}(e^{x^{2}})+\dfrac{d}{d x}(e^{x^{3}})+\dfrac{d}{d x}(e^{x^{4}})+\dfrac{d}{d x}(e^{x^{3}})$

$=e^{x}+[e^{x^{2}} \times \dfrac{d}{d x}(x^{2})]+[e^{x^{3}} \cdot \dfrac{d}{d x}(x^{3})]+[e^{x^{4}} \cdot \dfrac{d}{d x}(x^{4})]+[e^{x^{5}} \cdot \dfrac{d}{d x}(x^{5})]$

$=e^{x}+(e^{x^{2}} \times 2 x)+(e^{x^{3}} \times 3 x^{2})+(e^{x^{4}} \times 4 x^{3})+(e^{x^{3}} \times 5 x^{4})$

$=e^{x}+2 x e^{x^{2}}+3 x^{2} e^{x^{3}}+4 x^{3} e^{x^{4}}+5 x^{4} e^{x^{5}}$

7. $\sqrt{e^{\sqrt{x}}}, x>0$

उत्तर दिखाएं

Solution

Let $y=\sqrt{e^{\sqrt{x}}}$

Then, $y^{2}=e^{\sqrt{x}}$

By differentiating this relationship with respect to $x$, we obtain

$ \begin{aligned} & y^{2}=e^{\sqrt{x}} \\ & \Rightarrow 2 y \dfrac{d y}{d x}=e^{\sqrt{x}} \dfrac{d}{d x}(\sqrt{x}) \quad \text{ [By applying the chain rule] } \\ & \Rightarrow 2 y \dfrac{d y}{d x}=e^{\sqrt{x}} \dfrac{1}{2} \cdot \dfrac{1}{\sqrt{x}} \\ & \Rightarrow \dfrac{d y}{d x}=\dfrac{e^{\sqrt{x}}}{4 y \sqrt{x}} \\ & \Rightarrow \dfrac{d y}{d x}=\dfrac{e^{\sqrt{x}}}{4 \sqrt{e^{\sqrt{x}}} \sqrt{x}} \\ & \Rightarrow \dfrac{d y}{d x}=\dfrac{e^{\sqrt{x}}}{4 \sqrt{x e^{\sqrt{x}}}}, x>0 \end{aligned} $

8. $\log (\log x), x>1$

उत्तर दिखाएं

Solution

Let $y=\log (\log x)$

By using the chain rule, we obtain

$ \begin{aligned} \dfrac{d y}{d x} & =\dfrac{d}{d x}[\log (\log x)] \\ & =\dfrac{1}{\log x} \cdot \dfrac{d}{d x}(\log x) \\ & =\dfrac{1}{\log x} \cdot \dfrac{1}{x} \\ = & \dfrac{1}{x \log x}, x>1 \end{aligned} $

9. $\dfrac{\cos x}{\log x}, x>0$

उत्तर दिखाएं

Solution

Let $y=\dfrac{\cos x}{\log x}$

By using the quotient rule, we obtain

$ \begin{aligned} \dfrac{d y}{d x} & =\dfrac{\dfrac{d}{d x}(\cos x) \times \log x-\cos x \times \dfrac{d}{d x}(\log x)}{(\log x)^{2}} \\ & =\dfrac{-\sin x \log x-\cos x \times \dfrac{1}{x}}{(\log x)^{2}} \\ & =\dfrac{-[x \log x \cdot \sin x+\cos x]}{x(\log x)^{2}}, x>0 \end{aligned} $

10. $\cos (\log x+e^{x}), x>0$

उत्तर दिखाएं

Solution

Let $y=\cos (\log x+e^{x})$

By using the chain rule, we obtain

$ \begin{aligned} \dfrac{d y}{d x} & =-\sin (\log x+e^{x}) \cdot \dfrac{d}{d x}(\log x+e^{x}) \\ & =-\sin (\log x+e^{x}) \cdot[\dfrac{d}{d x}(\log x)+\dfrac{d}{d x}(e^{x})] \\ & =-\sin (\log x+e^{x}) \cdot(\dfrac{1}{x}+e^{x}) \\ & =-(\dfrac{1}{x}+e^{x}) \sin (\log x+e^{x}), x>0 \end{aligned} $


सीखने की प्रगति: इस श्रृंखला में कुल 9 में से चरण 4।