अध्याय 3 मैट्रिक्स अभ्यास 3.3
अभ्यास 3.3
1. निम्नलिखित प्रत्येक मैट्रिक्स के त्रिपरिवर्तन ज्ञात कीजिए:
(i) $\begin{bmatrix}5 \\ \frac{1}{2} \\ -1\end{bmatrix}$
(ii) $\begin{bmatrix}1 & -1 \\ 2 & 3\end{bmatrix}$
(iii) $\begin{bmatrix}-1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1\end{bmatrix}$
उत्तर दिखाएं
हल
(i) मान लीजिए $A= \begin{bmatrix} 5 \\ \frac{1}{2} \\ -1\end{bmatrix} $, तो $A^{T}= \begin{bmatrix} 5 & \frac{1}{2} & -1 \end{bmatrix} $
(ii) मान लीजिए $A= \begin{bmatrix} 1 & -1 \\ 2 & 3\end{bmatrix} $, तो $A^{T}= \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} $
(iii) मान लीजिए $A= \begin{bmatrix} -1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1\end{bmatrix} $, तो $A^{T}= \begin{bmatrix} -1 & \sqrt{3} & 2 \\ 5 & 5 & 3 \\ 6 & 6 & -1 \end{bmatrix} $
2. यदि $A=\begin{bmatrix}-1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1\end{bmatrix}$ और $B=\begin{bmatrix}-4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{bmatrix}$, तो सत्यापित कीजिए कि (i) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$, (ii) $(A-B)^{\prime}=A^{\prime}-B^{\prime}$
उत्तर दिखाएं
हल
हम जानते हैं: $A^{\prime}= \begin{bmatrix} -1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1\end{bmatrix} , B^{\prime}= \begin{bmatrix} -4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1 \end{bmatrix} $
(i) $A+B= \begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1\end{bmatrix} + \begin{bmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{bmatrix} = \begin{bmatrix} -5 & 3 & -2 \\ 6 & 9 & 9 \\ -1 & 4 & 2 \end{bmatrix} $
$\therefore(A+B)^{\prime}= \begin{bmatrix} -5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2 \end{bmatrix} $
$A^{\prime}+B^{\prime}= \begin{bmatrix} -1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1\end{bmatrix} + \begin{bmatrix} -4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1\end{bmatrix} = \begin{bmatrix} -5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2 \end{bmatrix} $
इसलिए, हम निष्कर्ष निकाल सकते हैं कि $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
(ii) $A-B= \begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1\end{bmatrix} - \begin{bmatrix} -4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{bmatrix} = \begin{bmatrix} 3 & 1 & 8 \\ 4 & 5 & 9 \\ -3 & -2 & 0 \end{bmatrix} $
$\therefore(A-B)^{\prime}= \begin{bmatrix} 3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0 \end{bmatrix} $
$A^{\prime}-B^{\prime}= \begin{bmatrix} -1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1\end{bmatrix} - \begin{bmatrix} -4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1\end{bmatrix} = \begin{bmatrix} 3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0 \end{bmatrix} $
इसलिए, हम निश्चित रूप से यह सत्यापित कर लिया है कि $(A-B)^{\prime}=A^{\prime}-B^{\prime}$।
3. यदि $A^{\prime}=\begin{bmatrix}3 & 4 \\ -1 & 2 \\ 0 & 1\end{bmatrix}$ और $B=\begin{bmatrix}-1 & 2 & 1 \\ 1 & 2 & 3\end{bmatrix}$, तो सत्यापित करें कि (i) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$ (ii) $(A-B)^{\prime}=A^{\prime}-B^{\prime}$
उत्तर दिखाएं
हल
(i) यह ज्ञात है कि $A=(A^{\prime})^{\prime}$
इसलिए, हम निम्नलिखित प्राप्त करते हैं:
$ \begin{aligned} & A= \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{bmatrix} \\ & B^{\prime}= \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} \\ & A+B= \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 5 & 4 & 4 \end{bmatrix} \\ & \therefore(A+B)^{\prime}= \begin{bmatrix} 2 & 5 \\ 1 & 4 \\ 1 & 4 \end{bmatrix} \\ & A^{\prime}+B^{\prime}= \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 1 & 4 \\ 1 & 4 \end{bmatrix} \end{aligned} $
इसलिए, हम निश्चित रूप से यह सत्यापित कर लिया है कि $(A+B)^{\prime}=A^{\prime}+B^{\prime}$।
(ii) $A-B= \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1\end{bmatrix} - \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3\end{bmatrix} = \begin{bmatrix} 4 & -3 & -1 \\ 3 & 0 & -2 \end{bmatrix} $
$ \begin{aligned} & \therefore(A-B)^{\prime}= \begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix} \\ & A^{\prime}-B^{\prime}= \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix}
\end{aligned} $
इस प्रकार, हम निश्चित रूप से यह सत्यापित कर लिया है कि $(A-B)^{\prime}=A^{\prime}-B^{\prime}$.
4. यदि $A^{\prime}=\begin{bmatrix}-2 & 3 \\ 1 & 2\end{bmatrix}$ और $B=\begin{bmatrix}-1 & 0 \\ 1 & 2\end{bmatrix}$, तो $(A+2 B)^{\prime}$ ज्ञात कीजिए
उत्तर दिखाएं
हल
हम जानते हैं कि $A=(A^{\prime})^{\prime}$
$ \begin{aligned} & \therefore A= \begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix} \\ & \therefore A+2 B= \begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix} +2 \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 0 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} -4 & 1 \\ 5 & 6 \end{bmatrix} \\ & \therefore(A+2 B)^{\prime}= \begin{bmatrix} -4 & 5 \\ 1 & 6 \end{bmatrix} \end{aligned} $
5. मैट्रिक्स $A$ और $B$ के लिए सत्यापित कीजिए कि $(A B)^{\prime}=B^{\prime} A^{\prime}$, जहाँ (i) $A=\begin{bmatrix}1 \\ -4 \\ 3\end{bmatrix}, B=\begin{bmatrix}-1 & 2 & 1\end{bmatrix}$ (ii) $A=\begin{bmatrix}0 \\ 1 \\ 2\end{bmatrix}, B=\begin{bmatrix}1 & 5 & 7\end{bmatrix}$
उत्तर दिखाएं
हल
$ \begin{aligned} & \text{ (i) } A B= \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix} \\ & \therefore(A B)^{\prime}= \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix} \\ & \text{ अब, } A^{\prime}= \begin{bmatrix} 1 & -4 & 3 \end{bmatrix} , B^{\prime}= \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \\ & \therefore B^{\prime} A^{\prime}= \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -4 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix} \end{aligned} $
इस प्रकार, हम निश्चित रूप से यह सत्यापित कर लिया है कि $(A B)^{\prime}=B^{\prime} A^{\prime}$.
(ii) $A B= \begin{bmatrix} 0 \\ 1 \\ 2\end{bmatrix} \begin{bmatrix} 1 & 5 & 7\end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 5 & 7 \\ 2 & 10 & 14 \end{bmatrix} $
$\therefore(A B)^{\prime}= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14 \end{bmatrix} $
अब, $A^{\prime}= \begin{bmatrix} 0 & 1 & 2\end{bmatrix} , B^{\prime}= \begin{bmatrix} 1 \\ 5 \\ 7 \end{bmatrix} $
$\therefore B^{\prime} A^{\prime}= \begin{bmatrix} 1 \\ 5 \\ 7\end{bmatrix} \begin{bmatrix} 0 & 1 & 2\end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14 \end{bmatrix} $
इसलिए, हमने सत्यापित कर लिया है कि $(A B)^{\prime}=B^{\prime} A^{\prime}$.
6. यदि (i) $A=\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}$, तो सत्यापित करें कि $A^{\prime} A=I$
(ii) यदि $A=\begin{bmatrix}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha\end{bmatrix}$, तो सत्यापित करें कि $A^{\prime} A=I$
उत्तर दिखाएं
हल
(i)
$ \begin{aligned} & A= \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \\ & \therefore A^{\prime}= \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \\ & A^{\prime} A= \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \\ & = \begin{bmatrix} (\cos \alpha)(\cos \alpha)+(-\sin \alpha)(-\sin \alpha) & (\cos \alpha)(\sin \alpha)+(-\sin \alpha)(\cos \alpha) \\ (\sin \alpha)(\cos \alpha)+(\cos \alpha)(-\sin \alpha) & (\sin \alpha)(\sin \alpha)+(\cos \alpha)(\cos \alpha) \end{bmatrix} \\ & = \begin{bmatrix} \cos 2 \alpha+\sin ^{2} \alpha & \sin \alpha \cos \alpha-\sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha-\sin \alpha \cos \alpha & \sin ^{2} \alpha+\cos ^{2} \alpha \end{bmatrix} \\ & = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} =I \end{aligned} $
इसलिए, हमने सत्यापित कर लिया है कि $A^{\prime} A=I$.
(ii) $\quad A= \begin{cases} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{cases} $
$ \begin{aligned} & \therefore A^{\prime}= \begin{bmatrix}
\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha \end{bmatrix} \\ & A^{\prime} A= \begin{bmatrix} \sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha \end{bmatrix} \begin{bmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix} \end{aligned} $
$ \begin{aligned} & { \begin{bmatrix} \sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha \end{bmatrix} \begin{bmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix} } \\ & = \begin{bmatrix} (\sin \alpha)(\sin \alpha)+(-\cos \alpha)(-\cos \alpha) & (\sin \alpha)(\cos \alpha)+(-\cos \alpha)(\sin \alpha) \\ (\cos \alpha)(\sin \alpha)+(\sin \alpha)(-\cos \alpha) & (\cos \alpha)(\cos \alpha)+(\sin \alpha)(\sin \alpha) \end{bmatrix} \\ & = \begin{bmatrix} \sin ^{2} \alpha+\cos ^{2} \alpha & \sin \alpha \cos \alpha-\sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha-\sin \alpha \cos \alpha & \cos ^{2} \alpha+\sin ^{2} \alpha \end{bmatrix} \\ & = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} =I \end{aligned} $
इसलिए, हमने सत्यापित कर लिया है कि $A^{\prime} A=I$।
7. (i) सिद्ध कीजिए कि आव्यूह $A=\begin{bmatrix}1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3\end{bmatrix}$ एक सममित आव्यूह है।
(ii) सिद्ध कीजिए कि आव्यूह $A=\begin{bmatrix}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{bmatrix}$ एक प्रतिसममित आव्यूह है।
उत्तर दिखाएं
हल
(i) हम जानते हैं:
$ A^{\prime}= \begin{bmatrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{bmatrix} =A $
$\therefore A^{\prime}=A$
इसलिए, $A$ एक सममित आव्यूह है।
(ii) हम जानते हैं:
$ A^{\prime}= \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} =- \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} =-A $
$\therefore A^{\prime}=-A$
इसलिए, $A$ एक प्रतिसममित आव्यूह है।
8. आव्यूह $A=\begin{bmatrix}1 & 5 \\ 6 & 7\end{bmatrix}$ के लिए सत्यापित कीजिए कि
(i) $(A+A^{\prime})$ एक सममित आव्यूह है
(ii) $(A-A^{\prime})$ एक प्रतिसममित आव्यूह है
उत्तर दिखाएँ
हल
$ \begin{aligned} & A^{\prime}= \begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix} \\ & \text{ (i) } A+A^{\prime}= \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 11 \\ 11 & 14 \end{bmatrix} \\ & \therefore(A+A^{\prime})^{\prime}= \begin{bmatrix} 2 & 11 \\ 11 & 14 \end{bmatrix} =A+A^{\prime} \end{aligned} $
इसलिए, $(A+A^{\prime})$ एक सममित आव्यूह है।
(ii) $A-A^{\prime}= \begin{bmatrix} 1 & 5 \\ 6 & 7\end{bmatrix} - \begin{bmatrix} 1 & 6 \\ 5 & 7\end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} $ $(A-A^{\prime})^{\prime}= \begin{bmatrix} 0 & 1 \\ -1 & 0\end{bmatrix} =- \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} =-(A-A^{\prime})$
इसलिए, $(A-A^{\prime})$ एक विषम सममित आव्यूह है।
9. जब $A=\begin{bmatrix}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{bmatrix}$ हो, तो $\frac{1}{2}(A+A^{\prime})$ और $\frac{1}{2}(A-A^{\prime})$ ज्ञात कीजिए।
उत्तर दिखाएँ
हल
दिया गया आव्यूह $A= \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix} $
$\therefore A^{\prime}= \begin{bmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0 \end{bmatrix} $
$A+A^{\prime}= \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{bmatrix} + \begin{bmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$\therefore \frac{1}{2}(A+A^{\prime})= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $
अब, $A-A^{\prime}= \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{bmatrix} - \begin{bmatrix} 0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{bmatrix} = \begin{bmatrix} 0 & 2 a & 2 b \\ -2 a & 0 & 2 c \\ -2 b & -2 c & 0 \end{bmatrix}$
$\therefore \frac{1}{2}(A-A^{\prime})= \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix} $
10. निम्नलिखित आव्यूहों को एक सममित और एक विषम सममित आव्यूह के योग के रूप में व्यक्त कीजिए:
[[1, -1], [-1, 1]]
(i) $\begin{bmatrix}3 & 5 \\ 1 & -1\end{bmatrix}$ (ii) $\begin{bmatrix}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{bmatrix}$ (iii) $\begin{bmatrix}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{bmatrix}$ (iv) $\begin{bmatrix}1 & 5 \\ -1 & 2\end{bmatrix}$
अभ्यास 11 और 12 में सही उत्तर का चयन करें।
उत्तर दिखाएं
हल
(i) मान लीजिए $A= \begin{bmatrix} 3 & 5 \\ 1 & -1\end{bmatrix} $, तो $A^{\prime}= \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix} $
$ \begin{aligned} & \text{अब, } A+A^{\prime}= \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 6 & 6 \\ 6 & -2 \end{bmatrix} \\ & \text{ मान लीजिए } P=\frac{1}{2}(A+A^{\prime})=\frac{1}{2} \begin{bmatrix} 6 & 6 \\ 6 & -2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & -1 \end{bmatrix} \\ & \text{अब, } P^{\prime}= \begin{bmatrix} 3 & 3 \\ 3 & -1 \end{bmatrix} =P \end{aligned} $
इसलिए, $P=\frac{1}{2}(A+A^{\prime})$ एक सममित आव्यूह है।
अब, $A-A^{\prime}= \begin{bmatrix} 3 & 5 \\ 1 & -1\end{bmatrix} - \begin{bmatrix} 3 & 1 \\ 5 & -1\end{bmatrix} = \begin{bmatrix} 0 & 4 \\ -4 & 0 \end{bmatrix} $
मान लीजिए $Q=\frac{1}{2}(A-A^{\prime})=\frac{1}{2} \begin{bmatrix} 0 & 4 \\ -4 & 0\end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} $
अब, $Q^{\prime}= \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} =-Q$
इसलिए, $Q=\frac{1}{2}(A-A^{\prime})$ एक विषम सममित आव्यूह है।
$A$ को $P$ और $Q$ के योग के रूप में प्रस्तुत करें:
$P+Q= \begin{bmatrix} 3 & 3 \\ 3 & -1\end{bmatrix} + \begin{bmatrix} 0 & 2 \\ -2 & 0\end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix} =A$
(ii) मान लीजिए $A= \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{bmatrix} $, तो $A^{\prime}= \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} $
अब, $A+A^{\prime}= \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{bmatrix} + \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{bmatrix} = \begin{bmatrix} 12 & -4 & 4 \\ -4 & 6 & -2 \\ 4 & -2 & 6 \end{bmatrix} $
Let $P=\frac{1}{2}(A+A^{\prime})=\frac{1}{2} \begin{bmatrix} 12 & -4 & 4 \\ -4 & 6 & -2 \\ 4 & -2 & 6\end{bmatrix} = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} $
अब, $P^{\prime}= \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} =P$
इसलिए, $P=\frac{1}{2}(A+A^{\prime})$ एक सममिति आव्यूह है।
अब, $A-A^{\prime}= \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{bmatrix} + \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $
मान लीजिए $Q=\frac{1}{2}(A-A^{\prime})= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $
अब, $Q^{\prime}= \begin{cases} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases} =-Q$
इसलिए, $Q=\frac{1}{2}(A-A^{\prime})$ एक विषम सममिति आव्यूह है।
$A$ को $P$ और $Q$ के योग के रूप में प्रस्तुत करें:
$P+Q= \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix} = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} =A$
(iii) मान लीजिए $A= \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{bmatrix} $, तो $A^{\prime}= \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix} $
अब, $A+A^{\prime}= \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{bmatrix} + \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{bmatrix} = \begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{bmatrix} $
मान लीजिए $P=\frac{1}{2}(A+A^{\prime})=\frac{1}{2} \begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4\end{bmatrix} = \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2} \\ \frac{1}{2} & -2 & -2 \\ -\frac{5}{2} & -2 & 2 \end{bmatrix} $
अब, $P^{\prime}= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2} \\ \frac{1}{2} & -2 & -2 \\ -\frac{5}{2} & -2 & 2 \end{bmatrix} =P$
इसलिए, $P=\frac{1}{2}(A+A^{\prime})$ एक सममिति आव्यूह है।
अब, $A-A^{\prime}= \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{bmatrix} - \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2\end{bmatrix} = \begin{bmatrix} 0 & 5 & 3 \\ -5 & 0 & 6 \\ -3 & -6 & 0 \end{bmatrix} $
Let $Q=\frac{1}{2}(A-A^{\prime})=\frac{1}{2} \begin{bmatrix} 0 & 5 & 3 \\ -5 & 0 & 6 \\ -3 & -6 & 0\end{bmatrix} = \begin{bmatrix} 0 & \frac{5}{2} & \frac{3}{2} \\ -\frac{5}{2} & 0 & 3 \\ -\frac{3}{2} & -3 & 0 \end{bmatrix} $
अब, $Q^{\prime}= \begin{bmatrix} 0 & -\frac{5}{2} & -\frac{3}{2} \\ \frac{5}{2} & 0 & -3 \\ \frac{3}{2} & 3 & 0 \end{bmatrix} =-Q$
इसलिए, $Q=\frac{1}{2}(A-A^{\prime})$ एक विषम सममिति आव्यूह है।
$A$ को $P$ और $Q$ के योग के रूप में प्रस्तुत करें:
$P+Q= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2} \\ \frac{1}{2} & -2 & -2 \\ -\frac{5}{2} & -2 & 2\end{bmatrix} + \begin{bmatrix} 0 & \frac{5}{2} & \frac{3}{2} \\ -\frac{5}{2} & 0 & 3 \\ -\frac{3}{2} & -3 & 0\end{bmatrix} = \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix} =A$
(iv) मान लीजिए $A= \begin{bmatrix} 1 & 5 \\ -1 & 2\end{bmatrix} $, तो $A^{\prime}= \begin{bmatrix} 1 & -1 \\ 5 & 2 \end{bmatrix} $
अब $A+A^{\prime}= \begin{bmatrix} 1 & 5 \\ -1 & 2\end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 5 & 2\end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 4 & 4 \end{bmatrix} $
मान लीजिए $P=\frac{1}{2}(A+A^{\prime})= \begin{cases} 1 & 2 \\ 2 & 2 \end{cases} $
अब, $P^{\prime}= \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} =P$
इसलिए, $P=\frac{1}{2}(A+A^{\prime})$ एक सममिति आव्यूह है।
अब, $A-A^{\prime}= \begin{bmatrix} 1 & 5 \\ -1 & 2\end{bmatrix} - \begin{bmatrix} 1 & -1 \\ 5 & 2\end{bmatrix} = \begin{bmatrix} 0 & 6 \\ -6 & 0 \end{bmatrix} $
मान लीजिए $Q=\frac{1}{2}(A-A^{\prime})= \begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix} $
अब, $Q^{\prime}= \begin{bmatrix} 0 & -3 \\ 3 & 0 \end{bmatrix} =-Q$
इसलिए, $Q=\frac{1}{2}(A-A^{\prime})$ एक विषम सममिति आव्यूह है।
$A$ को $P$ और $Q$ के योग के रूप में प्रस्तुत करें:
$ P+Q= \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 3 \\ -3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix} =A $
11. यदि $A, B$ समान क्रम के सममिति आव्यूह हैं, तो $A B-B A$ एक
(A) विषम सममिति आव्यूह
(B) सममिति आव्यूह
(C) शून्य आव्यूह
(D) तत्सम आव्यूह
उत्तर दिखाएं
हल
सही उत्तर A है।
$A$ और $B$ सममिति आव्यूह हैं, इसलिए हम निम्नलिखित लिख सकते हैं:
$$ \begin{equation*} A^{\prime}=A \text{ और } B^{\prime}=B \tag{1} \end{equation*} $$
$$ \begin{matrix} \text{ ध्यान दें }(A B-B A)^{\prime} & =(A B)^{\prime}-(B A)^{\prime} & & {[(A-B)^{\prime}=A^{\prime}-B^{\prime}]} \\ & =B^{\prime} A^{\prime}-A^{\prime} B^{\prime} & & {[(A B)^{\prime}=B^{\prime} A^{\prime}]} \\ & =B A-A B & {[\text{ द्वारा (1)] }} \tag{1}\\ & =-(A B-B A) & \end{matrix} $$
$\therefore(A B-B A)^{\prime}=-(A B-B A)$
इसलिए, $(A B-B A)$ एक विषम सममिति आव्यूह है।
12. यदि $A=\begin{bmatrix}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}$, और $A+A^{\prime}=I$, तो $\alpha$ का मान है (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{3}$ (C) $\pi$ (D) $\frac{3 \pi}{2}$
उत्तर दिखाएं
हल
सही उत्तर $B$ है।
$ \begin{aligned} & A= \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \\ & \Rightarrow A^{\prime}= \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \end{aligned} $
अब, $A+A^{\prime}=I$
$ \begin{aligned} & \therefore \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} + \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ & \Rightarrow \begin{bmatrix} 2 \cos \alpha & 0 \\ 0 & 2 \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{aligned} $
दोनों आव्यूहों के संगत तत्वों की तुलना करने पर हमें प्राप्त होता है:
$ \begin{aligned} & 2 \cos \alpha=1 \\ & \Rightarrow \cos \alpha=\frac{1 \pi}{2}=\cos \frac{\pi}{3} \\ & \therefore \alpha=\frac{\pi}{3} \end{aligned} $