sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें

एकांक 4 रासायनिक गतिकज (अंतर्गत प्रश्न-4)

अंतर्गत प्रश्न

4.7 तापमान पर अभिक्रिया के दर स्थिरांक पर क्या प्रभाव पड़ेगा?

उत्तर दिखाएँ

उत्तर

एक अभिक्रिया के दर स्थिरांक के लगभग दोगुना हो जाता है जब तापमान में $10^{\circ}$ की वृद्धि होती है। हालांकि, एक रासायनिक अभिक्रिया के दर के तापमान पर निर्भरता एरेनियस समीकरण द्वारा दी जाती है,

$k=\mathrm{Ae}^{-E \mathrm{a} / R T}$

जहाँ,

$A$ एरेनियस गुणांक या आवृत्ति गुणांक है

T तापमान है

R गैस नियतांक है

$E_{a}$ सक्रियण ऊर्जा है

4.8 एक रासायनिक अभिक्रिया की दर 298K से तापमान में $10 \mathrm{~K}$ की वृद्धि के लिए दोगुनी हो जाती है। $E_{\text {a }}$ की गणना कीजिए।

उत्तर दिखाएँ

उत्तर

दिया गया है कि $T_{1}=298 \mathrm{~K}$

$\therefore T_{2}=(298+10) \mathrm{K}$

$=308 \mathrm{~K}$

हम जानते हैं कि जब तापमान में $10^{\circ}$ की वृद्धि होती है तो अभिक्रिया की दर दोगुनी हो जाती है।

इसलिए, हम $k_{1}=k$ लेते हैं और $k_{2}=2 k$ लेते हैं।

इसके अलावा, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

अब, इन मानों को समीकरण में बदलते हैं:

$\log \frac{k_{2}}{k_{1}}=\frac{E_{\mathrm{a}}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$

हम प्राप्त करते हैं:

$\log \frac{2 k}{k}=\frac{E_{\mathrm{a}}}{2.303 \times 8.314}\left[\frac{10}{298 \times 308}\right]$

$\Rightarrow \log 2=\frac{E_{\mathrm{a}}}{2.303 \times 8.314}\left[\frac{10}{298 \times 308}\right]$

$\Rightarrow E_{\mathrm{a}}=\frac{2.303 \times 8.314 \times 298 \times 308 \times \log 2}{10}$

$=52897.78 \mathrm{~J} \mathrm{~mol}^{-1}$

$=52.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$

नोट: इस उत्तर में एनसीईआरटी पाठक्रम में दिए गए उत्तर के थोड़ा भिन्नता है।

4.9 अभिक्रिया $ 2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H_2}+\mathrm{I_2}(\mathrm{~g}) $ के लिए सक्रियण ऊर्जा $209.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ है जबकि तापमान $581 \mathrm{~K}$ है। अभिकर्मक के अणुओं के उन भिन्न के अणुओं की गणना कीजिए जिनकी ऊर्जा सक्रियण ऊर्जा के बराबर या उससे अधिक हो।

उत्तर दिखाएं

उत्तर

दिए गए मामले में:

$E_{\mathrm{a}}=209.5 \mathrm{~kJ} \mathrm{~mol}^{-1}=209500 \mathrm{~J} \mathrm{~mol}^{-1}$

$T=581 \mathrm{~K}$

$R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

अब, अभिकर्मक के अणुओं के उन भिन्न के अणुओं की संख्या जिनकी ऊर्जा कम से कम सक्रियण ऊर्जा के बराबर होती है, निम्नलिखित द्वारा दी गई है: $x=e-E a / R T \Rightarrow \operatorname{In} x=-E$


सीखने की प्रगति: इस श्रृंखला में कुल 5 में से चरण 4।