त्रिकोणमितीय समीकरण प्रश्न 3
प्रश्न 3 - 2024 (27 जनवरी शिफ्ट 2)
यदि $2 \tan ^{2} \theta-5 \sec \theta=1$ के अंतराल $\left[0, \frac{n \pi}{2}\right]$ में ठीक 7 हल हो, तो $n \in N$ के न्यूनतम मान के लिए $\sum _{k=1}^{n} \frac{k}{2^{k}}$ के बराबर है:
(1) $\frac{1}{2^{15}}\left(2^{14}-14\right)$
(2) $\frac{1}{2^{14}}\left(2^{15}-15\right)$
(3) $1-\frac{15}{2^{13}}$
(4) $\frac{1}{2^{13}}\left(2^{14}-15\right)$
उत्तर दिखाएं
उत्तर (4)
समाधान
$$ \begin{aligned} & 2 \tan ^{2} \theta-5 \sec \theta-1=0 \\ & \Rightarrow 2 \sec ^{2} \theta-5 \sec \theta-3=0 \\ & \Rightarrow(2 \sec \theta+1)(\sec \theta-3)=0 \\ & \Rightarrow \sec \theta=-\frac{1}{2}, 3 \\ & \Rightarrow \cos \theta=-2, \frac{1}{3} \\ & \Rightarrow \cos \theta=\frac{1}{3} \end{aligned} $$
7 हल के लिए $n=13$
इसलिए, $\sum _{k=1}^{13} \frac{k}{2^{k}}=S$ (मान लीजिए)
$S=\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\ldots+\frac{13}{2^{13}}$
$\frac{1}{2} S=\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots .+\frac{12}{2^{13}}+\frac{13}{2^{14}}$
$\Rightarrow \frac{S}{2}=\frac{1}{2} \cdot \frac{1-\frac{1}{2^{13}}}{1-\frac{1}{2}}-\frac{13}{2^{14}} \Rightarrow S=2 \cdot\left(\frac{2^{13}-1}{2^{13}}\right)-\frac{13}{2^{13}}$