अवकल समीकरण प्रश्न 4
प्रश्न 4 - 2024 (01 फरवरी शिफ्ट 2)
यदि $\frac{d x}{d y}=\frac{1+x-y^{2}}{y}, x(1)=1$, तो $5 x(2)$ के बराबर है :
उत्तर दिखाएं
उत्तर (5)
समाधान
$\frac{d x}{d y}-\frac{x}{y}=\frac{1-y^{2}}{y}$
समाकलन गुणक $=e^{\int-\frac{1}{y} d y}=\frac{1}{y}$
$x \cdot \frac{1}{y}=\int \frac{1-y^{2}}{y^{2}} d y$
$\frac{x}{y}=\frac{-1}{y}-y+c$
$x=-1-y^{2}+c y$
दिया गया है $x(1)=1$
$1=-1-1+c \Rightarrow c=3$
$x=-1-y^{2}+3 y$
$5 x(2)=5(-1-4+6)$
$=5$