sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें

सांख्यिकीय प्रश्न 1

प्रश्न 1 - 24 जनवरी - शिफ्ट 2

मान लीजिए छह संख्याएँ $a_1, a_2, a_3, a_4, a_5, a_6$ A.P. में हैं और $a_1+a_3=10$ है। यदि इन छह संख्याओं का औसत $\frac{19}{2}$ है और उनका विचलन वर्ग $\sigma^{2}$ है, तो $8 \sigma^{2}$ किसके बराबर है?

(1) 220

(2) 210

(3) 200

(4) 105

उत्तर दिखाएँ

उत्तर: (2)

समाधान:

सूत्र: अंकगणितीय श्रेणी , व्यक्तिगत श्रेणी का अंकगणितीय औसत (असमूहित डेटा) , व्यक्तिगत अवलोकनों का विचलन वर्ग (असमूहित डेटा)

$a_1+a_3=10=a_1+d \Rightarrow 5$

$\mathbf{a} _1+\mathbf{a} _2+\mathbf{a} _3+\mathbf{a} _4+\mathbf{a} _5+\mathbf{a} _6=\mathbf{5 7}$

$\Rightarrow \frac{6}{2}[a_1+a_6]=57$

$\Rightarrow a_1+a_6=19$

$\Rightarrow 2 a_1+5 d=19$ और $a_1+d=5$

$\Rightarrow a_1=2, d=3$

संख्याएँ : $2,5,8,11,14,17$

विचलन वर्ग $=\sigma^{2}=$ वर्गों का औसत - औसत का वर्ग

$=\frac{2^{2}+5^{2}+8^{2}+(11)^{2}+(14)^{2}+(17)^{2}}{6}-(\frac{19}{2})^{2}$

$=\frac{699}{6}-\frac{361}{4}=\frac{105}{4}$

$\therefore 8 \sigma^{2}=210$


सीखने की प्रगति: इस श्रृंखला में कुल 10 में से चरण 1।