sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ

Limits Question 1

рдкреНрд░рд╢реНрди 1 - 24 рдЬрдирд╡рд░реА - Shift 1

$\lim _{t \to 0}(1^{\frac{1}{\sin ^{2} t}}+2^{\frac{1}{\sin ^{2} t}}+\ldots +n^{\frac{1}{\sin^{2} t}})^{\frac{1}{\sin ^{2} t}}$ рдХреЗ рдмрд░рд╛рдмрд░ рд╣реИ

(1) $n^{2}+n$

$n$

(3) $\frac{n(n+1)}{2}$

(4) $n^{2}$

рдЙрддреНрддрд░ рджрд┐рдЦрд╛рдПрдБ

рдЙрддреНрддрд░: (2)

рд╕рдорд╛рдзрд╛рди:

рд╕реВрддреНрд░: рд▓’ рд╣реЛрдкрд┐рдЯрд▓ рдХрд╛ рдирд┐рдпрдо

$\begin{aligned} & \lim _{t \rightarrow 0}\left(1^{\operatorname{cosec}^2 t}+2^{\operatorname{cosec}^2 t}+\ldots \ldots . .+n^{\operatorname{cosec}^2 t}\right)^{\sin ^2 t} \\ & =\lim _{t \rightarrow 0} n\left(\left(\frac{1}{n}\right)^{\operatorname{cosec}^2 t}+\left(\frac{2}{n}\right)^{\operatorname{cosec}^2 t}+\ldots \ldots .+1\right)^{\sin ^2 t} \\ & = n \end{aligned}$


рд╕реАрдЦрдиреЗ рдХреА рдкреНрд░рдЧрддрд┐: рдЗрд╕ рд╢реНрд░реГрдВрдЦрд▓рд╛ рдореЗрдВ рдХреБрд▓ 5 рдореЗрдВ рд╕реЗ рдЪрд░рдг 1ред

Class-10