sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें

फंक्शन प्रश्न 15

प्रश्न 15 - 30 जनवरी - शिफ्ट 2

फंक्शन $f(x)=\sqrt{3-x}+\sqrt{2+x}$ की परिसर है

(1) $[\sqrt{5}, \sqrt{10}]$

(2) $[2 \sqrt{2}, \sqrt{11}]$

(3) $[\sqrt{5}, \sqrt{13}]$

(4) $[\sqrt{2}, \sqrt{7}]$

उत्तर दिखाएं

उत्तर: (1)

समाधान:

सूत्र: फंक्शन पर ऑपरेशन , फंक्शन की परिसर

फंक्शन $f(x)=\sqrt{3-x}+\sqrt{2+x}$ की परिसर ज्ञात करने के लिए निम्नलिखित कदम अपनाएं:

कदम 1: प्रांत निर्धारित करें फंक्शन में वर्गमूल हैं, इसलिए वर्गमूल के अंदर के व्यंजक गैर-ऋणात्मक होने चाहिए।

  1. $\sqrt{3-x}$ के लिए:

$$ 3-x \geq 0 \Longrightarrow x \leq 3 $$

  1. $\sqrt{2+x}$ के लिए:

$$ 2+x \geq 0 \Longrightarrow x \geq-2 $$

इन असमानताओं को मिलाने पर, $f(x)$ का प्रांत है:

$$ -2 \leq x \leq 3 $$

कदम 2: महत्वपूर्ण बिंदु खोजें फंक्शन के महत्वपूर्ण बिंदु खोजने के लिए, $f(x)$ का अवकलज लें और उसे शून्य के बराबर करें।

  1. $f(x)$ का अवकलज लें:

$$ f^{\prime}(x)=\frac{d}{d x}(\sqrt{3-x}+\sqrt{2+x}) $$

चैन नियम का उपयोग करें:

$$ f^{\prime}(x)=\frac{-1}{2 \sqrt{3-x}}+\frac{1}{2 \sqrt{2+x}} $$

  1. $f^{\prime}(x)=0$ के बराबर करें:

$$ \frac{-1}{2 \sqrt{3-x}}+\frac{1}{2 \sqrt{2+x}}=0 $$

सरलीकरण:

$$ \frac{1}{\sqrt{2+x}}=\frac{1}{\sqrt{3-x}} $$

दोनों ओर वर्ग करें:

$$ 2+x=3-x $$

$x$ के लिए हल करें:

$$ 2 x=1 \Longrightarrow x=\frac{1}{2} $$

कदम 3: महत्वपूर्ण बिंदु और सीमा पर $f(x)$ का मूल्यांकन करें $x=-2$, $x=\frac{1}{2}$ और $x=3$ पर $f(x)$ का मूल्यांकन करें।

  1. $x=-2$ पर:

$$ \begin{gathered} f(-2)=\sqrt{3-(-2)}+\sqrt{2+(-2)}=\sqrt{5}+\sqrt{0} \ =\sqrt{5} \end{gathered} $$

  1. $x=\frac{1}{2}$ पर:

$$ \begin{gathered} f\left(\frac{1}{2}\right)=\sqrt{3-\frac{1}{2}}+\sqrt{2+\frac{1}{2}}=\sqrt{\frac{5}{2}}+\sqrt{\frac{5}{2}} \ =2 \times \sqrt{\frac{5}{2}}=\sqrt{10} \end{gathered} $$

  1. $x=3$ पर:

$$ f(3)=\sqrt{3-3}+\sqrt{2+3}=\sqrt{0}+\sqrt{5}=\sqrt{5} $$

कदम 4: परिसर निर्धारित करें मूल्यांकन से, $f(x)$ का न्यूनतम मूल्य $\sqrt{5}$ और अधिकतम मूल्य $\sqrt{10}$ है।

इसलिए, $f(x)$ की परिसर है:

$$ [\sqrt{5}, \sqrt{10}] $$


सीखने की प्रगति: इस श्रृंखला में कुल 20 में से चरण 15।