sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! ЁЯМРЁЯУЪЁЯЪАЁЯОУ

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
рдХреГрдкрдпрд╛ рдЕрдкрдиреА рдкрд╕рдВрджреАрджрд╛ рднрд╛рд╖рд╛ рдЪреБрдиреЗрдВ

рд╕рдВрдЪрд╛рд░ рдХрд╛ рд╕рд┐рджреНрдзрд╛рдВрдд

рдКрдВрдЪрд╛рдИ рдХреЗ рдЯрд╛рд╡рд░ рд╕реЗ рдЯреНрд░рд╛рдВрд╕рдорд┐рд╢рди $h$

  • рдХреНрд╖рд┐рддрд┐рдЬ рдХреА рджреВрд░реА $d_T=\sqrt{2Rh_t}$
  • $d_M=\sqrt{2Rh_T}\sqrt{2Rh_R}$
рдЖрдпрд╛рдо рдЕрдзрд┐рдорд┐рд╢реНрд░рдг
  • рд╕рдВрдЧреНрд░рд╛рд╣рдХ рд╕рдВрдХреЗрдд $c_{m}(t)$ рдХреЗ рд░реВрдк рдореЗрдВ рд▓рд┐рдЦрд╛ рдЬрд╛ рд╕рдХрддрд╛ рд╣реИ

$c_{m}(t)=A_{c} \sin \omega_{c} t+\frac{\mu A_{c}}{2} \cos \left(\omega_{c}-\omega_{m}\right) t-\frac{\mu A_{c}}{2} \cos \left(\omega_{c}+\omega_{m}\right)$

  • рдореЙрдбреНрдпреВрд▓реЗрд╢рди рд╕реВрдЪрдХрд╛рдВрдХ $m_{a}=\frac{\text { Change in amplitude of carrier wave }}{\text { Amplitude of original carrier wave }}=\frac{k A_{m}}{A_{c}}$ рдХрд╣рд╛рдБ $\mathrm{k}=\mathrm{A}$ рд╡рд╣ рдХрд╛рд░рдХ рдЬреЛ рдХрд┐рд╕реА рджрд┐рдП рдЧрдП рдЖрдпрд╛рдо рдХреЗ рд▓рд┐рдП рдЖрдпрд╛рдо рдореЗрдВ рдЕрдзрд┐рдХрддрдо рдкрд░рд┐рд╡рд░реНрддрди рдирд┐рд░реНрдзрд╛рд░рд┐рдд рдХрд░рддрд╛ рд╣реИ $E_{m}$ рдореЙрдбреНрдпреВрд▓реЗрдЯрд┐рдВрдЧ рдХрд╛. рдЕрдЧрд░ $k=1$ рддрдм $m_{a}=\frac{A_{m}}{A_{c}}=\frac{A_{\text {max }}-A_{\text {min }}}{A_{\text {max }}-A_{\text {min }}}$

  • рдпрджрд┐ рдПрдХ рд╡рд╛рд╣рдХ рддрд░рдВрдЧ рдХреЛ рдХрдИ рд╕рд╛рдЗрди рддрд░рдВрдЧреЛрдВ рджреНрд╡рд╛рд░рд╛ рд╕рдВрд╢реЛрдзрд┐рдд рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ рддреЛ рдХреБрд▓ рд╕рдВрд╢реЛрдзрд┐рдд рд╕реВрдЪрдХрд╛рдВрдХ $m_{t}$ рджреНрд╡рд╛рд░рд╛ рджрд┐рдпрд╛ рдЧрдпрд╛ рд╣реИ $m_{t}=\sqrt{m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+\ldots \ldots \ldots . .}$

  • рд╕рд╛рдЗрдб рдмреИрдВрдб рдЖрд╡реГрддреНрддрд┐рдпрд╛рдБ

$\left(f_{c}+f_{m}\right)=$ рдКрдкрд░реА рд╕рд╛рдЗрдб рдмреИрдВрдб (рдпреВрдПрд╕рдмреА) рдЖрд╡реГрддреНрддрд┐

$\left(f_{c}-f_{m}\right)=$ рд▓реЛрдЕрд░ рд╕рд╛рдЗрдб рдмреИрдВрдб (рдПрд▓рдмреАрдПрд╕) рдЖрд╡реГрддреНрддрд┐

  • рдмреИрдВрдб рдХреА рдЪреМрдбрд╝рд╛рдИ =$(f_c+f_m)-(f_c-f_m)=2f_m$

  • AM рддрд░рдВрдЧреЛрдВ рдореЗрдВ рд╢рдХреНрддрд┐: $P=\frac{V_{\text {rms }}^{2}}{R}$

(i) рд╡рд╛рд╣рдХ рд╢рдХреНрддрд┐ $P_{c}=\frac{\left(\frac{A_{c}}{\sqrt{2}}\right)^{2}}{R}=\frac{A_{c}^{2}}{2 R}$

(ii) рд╕рд╛рдЗрдб рдмреИрдВрдб рдХреА рдХреБрд▓ рд╢рдХреНрддрд┐ $P_{s b}=\frac{\left(\frac{m_{a} A_{c}}{2 \sqrt{2}}\right)^{2}}{R}=\frac{\left(\frac{m_{a} A_{c}}{2 \sqrt{2}}\right)}{2 R}=\frac{m_{a}^{2} A_{c}^{2}}{4 R}$

(iii) AM рддрд░рдВрдЧ рдХреА рдХреБрд▓ рд╢рдХреНрддрд┐ $P_{\text {Total }}=P_{c}+P_{a b}=\frac{A_{c}^{2}}{2 R}\left(1+\frac{m_{a}^{2}}{2}\right)$

рд╡реИрдХрд▓реНрдкрд┐рдХ рдкрд╛рда

(v) AM рдореЗрдВ рдЕрдзрд┐рдХрддрдо рд╢рдХреНрддрд┐ (рд╡рд┐рд░реВрдкрдг рдХреЗ рдмрд┐рдирд╛) рдХрдм рд╣реЛрдЧреА $m_{a}=1$ рдЕрд░реНрдерд╛рдд, $P_{t}=1.5 P=3 P_{a b}$

(vi) рдпрджрд┐ $I_c=$ рдЕрдирдореЙрдбреНрдпреБрд▓реЗрдЯреЗрдб рдХрд░рдВрдЯ рдФрд░ $I_t=$ рдХреБрд▓ рдпрд╛ рд╕рдВрдЧреНрд░рд╛рд╣рдХ рдзрд╛рд░рд╛

$\Rightarrow \frac{P_{t}}{P_{c}}=\frac{I_{t}^{2}}{I_{c}^{2}} \Rightarrow \frac{I_{t}}{I_{c}}=\sqrt{\left(1+\frac{m_{a}^{2}}{2}\right)}$

рдЖрд╡реГрддрд┐ рдХрд╛ рдЙрддрд╛рд░ - рдЪрдврд╝рд╛рд╡

-рдЖрд╡реГрддреНрддрд┐ рд╡рд┐рдЪрд▓рди $\delta==\left(f_{\text {max }}-f_{c}\right)=f_{c}-f_{\text {min }}=k_{f} \cdot \frac{E_{m}}{2 \pi}$

  • рдХреИрд░рд┐рдпрд░ рд╕реНрд╡рд┐рдВрдЧ (рд╕реАрдПрд╕) $=C S=2 \times \Delta f$
  • рдлреНрд░реАрдХреНрд╡реЗрдВрд╕реА рдореЙрдбреНрдпреВрд▓реЗрд╢рди рдЗрдВрдбреЗрдХреНрд╕ $\left(m_{f}\right)$

=. $m_{f}=\frac{\delta}{f_{m}}=\frac{f_{\max }-f_{c}}{f_{m}}=\frac{f_{c}-f_{\text {min }}}{f_{m}}=\frac{k_{f} E_{m}}{f_{m}}$

-рдЖрд╡реГрддреНрддрд┐ рд╕реНрдкреЗрдХреНрдЯреНрд░рдо $=\mathrm{FM}$ рд╕рд╛рдЗрдб рдмреИрдВрдб рдореЙрдбреНрдпреВрд▓реЗрдЯреЗрдб рд╕рд┐рдЧреНрдирд▓ рдореЗрдВ рдЕрдирдВрдд рд╕рдВрдЦреНрдпрд╛ рдореЗрдВ рд╕рд╛рдЗрдб рдмреИрдВрдб рд╣реЛрддреЗ рд╣реИрдВ рдЬрд┐рдирдХреА рдЖрд╡реГрддреНрддрд┐рдпрд╛рдБ рд╣реЛрддреА рд╣реИрдВ $\left(f_{c} \pm f_{m}\right),\left(f_{c} \pm 2 f_{m}\right)$, $\left(f_{c} \pm 3 f_{m}\right) \ldots \ldots \ldots$.

  • рд╡рд┐рдЪрд▓рди рдЕрдиреБрдкрд╛рдд $=\frac{(\Delta f_{\max })}{\left(f_m \right)_{\max }}$

  • рдкреНрд░рддрд┐рд╢рдд рдореЙрдбреНрдпреВрд▓реЗрд╢рди, рдПрдо $ = \frac{ \Delta f_{actual} }{ \Delta f_{max }}$


рд╕реАрдЦрдиреЗ рдХреА рдкреНрд░рдЧрддрд┐: рдЗрд╕ рд╢реНрд░реГрдВрдЦрд▓рд╛ рдореЗрдВ рдХреБрд▓ 28 рдореЗрдВ рд╕реЗ рдЪрд░рдг 17ред

Class-10